
大
纲 前言

◼为什么需要“大规模计算” [HPC, DL, Business platform system, Cloud已经合流]

➢导入 – 科学计算(天气预报)，DL, 互联网平台(Google, Amazon, Alibaba, MeiTuan, …)

基础篇
◼ 并发程序的样子 – Divide & Conquer, Model & Challenges, PCAM, Data/Task, …

➢天气预报的计算

◼ 运行环境

➢硬件 – 自己梳理的3个方案 – Shared/Unshared Memory, Hybrid

➢系统软件 – 协议栈, Modern OS, Distributed Job Scheduler, GTM等

算法级篇
◼ OpenMP, MPI, CUDA (DL的实现), Big Data 中的MR/Spark等 (只涉及在Big Data SDK之上的编
程；大数据本身的介绍放到后一部分)

系统级篇 – 互联网平台的实现

◼ “秒杀”的技术架构

◼ 计算广告

◼ 系统架构 (HTAP等)

➢ Flink, ClickHouse, MaxCompute, ELK …



6

Chapter 6: HUGE Concurrency architecture for “秒杀”

Architecture for “秒杀”

⚫ Just “Divide and Conquer” – Data level, Module 
level

⚫Big Data + Cloud now!

So-called Software architect [软件架构师]



7

觉得还是要讲讲现在电子商务平台的背景 –

◼盈利 – 抽成，广告，云计算，金融 (电子支付、小额贷款等)

➢电子支付 – 延期转款等，但是，只是收集了钱还得生钱才行 (就像银行存款，还需
要贷款出去，得到高额差价)

➢所以，才有了支付宝那样的“花呗”、“理财产品” 等 – 可以说是野蛮生长了 (侵占了
银行的功能)

◼首先要做的就是 – 如何吸引庞大的用户？
➢电商 – Super Market 的其实：货品丰富、质优价廉呗 – 长尾效应 (Long Tail)

➢其他 – 自己尝试梳理下：Google, FB, Twitter, Baidu, MeiTuan, Youtube, 
WeChat, 抖音，西瓜，…



8

Background
We are now in IT age/ML age/AI age … 

Platform is a popular business pattern for e-commerce

◼Many great companies 



12

Long tail explains the Business @ IT age/E-commerce era



13

背后的技术支撑

Business pattern is always/still the core!

◼How to earn money!

Then, to carry out the “long tail”, 

we need the support of HUGE scale 

data (products, customers, …) and

computing power 

◼You have to consider to do business
with the whole world! – of course in 
many stages 

So many –

◼Customers, Computers, Data, 

◼with real-time processing request

Computers and data 

storage are 

Distributed!



14

We focus on the tech 
– how to support the HUGE Concurrency?!

Then, to carry out the “long tail”, we need the support of HUGE

scale data (products, customers, …) and computing power 

◼You have to consider to do business with the whole world! – of course in 
many stages 

So many –

◼Customers, Computers, Data, with real-time processing request



29

 分布式

◼ 系统中的多个模块在不同服务器上部署，即可称为分布式系统，

➢ 如Tomcat和数据库分别部署在不同的服务器上，或两个相同功能的Tomcat分别部署在不同服务器上

 高可用

◼ 系统中部分节点失效时，其他节点能够接替它继续提供服务，则可认为系统具有高可用性

 集群

◼ 一个特定领域的软件部署在多台服务器上并作为一个整体提供一类服务，这个整体称为集群。

➢ 如Zookeeper中的Master和Slave分别部署在多台服务器上，共同组成一个整体提供集中配置服务。在常见的集群中，客户端往往能
够连接任意一个节点获得服务，并且当集群中一个节点掉线时，其他节点往往能够自动的接替它继续提供服务，这时候说明集群具有
高可用性

 负载均衡

◼ 请求发送到系统时，通过某些方式把请求均匀分发到多个节点上，使系统中每个节点能够均匀的处理请求负载，则可认
为系统是负载均衡的

 正向代理和反向代理

◼ 系统内部要访问外部网络时，统一通过一个代理服务器把请求转发出去，在外部网络看来就是代理服务器发起的访问，
此时代理服务器实现的是正向代理；当外部请求进入系统时，代理服务器把该请求转发到系统中的某台服务器上，对外
部请求来说，与之交互的只有代理服务器，此时代理服务器实现的是反向代理。简单来说，正向代理是代理服务器代替
系统内部来访问外部网络的过程，反向代理是外部请求访问系统时通过代理服务器转发到内部服务器的过程。



30

1 单机架构

◼以淘宝作为例子。在网站最初时，应用数量与用户数都较少，可以把Tomcat
和数据库部署在同一台服务器上。浏览器往www.taobao.com发起请求时，首
先经过DNS服务器（域名系统）把域名转换为实际IP地址10.102.4.1，浏览器
转而访问该IP对应的Tomcat。

随着用户数的增长，Tomcat和数据库之间竞争资源，单机性能不足以支撑业务



31

By “Web-based Application”

 It’s a quite popular application style every SSE student should know!

Client Server

Request

Response

HTML Codes

<html>

…

</html>

Program / 

Scripts



32

2 第一次演进：Tomcat与数据库分开部署

◼ Tomcat和数据库分别独占服务器资源，显著提高两者各自性能。

随着用户数的增长，并发读写数据库成为瓶颈



33

3 tier architecture 



34

3 第二次演进：引入本地缓存和分布式缓存

◼ 在Tomcat同服务器上或同JVM中增加本地缓存，并在外部增加分布式缓存，缓存热门商品信
息或热门商品的html页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉，大大降低数
据库压力。其中涉及的技术包括：使用memcached作为本地缓存，使用Redis作为分布式缓
存，还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。

缓存抗住了大部分的访问请求，随着用户数的增长，并发压力主要落在单机的
Tomcat上，响应逐渐变慢



35

4 第三次演进：引入反向代理实现负载均衡

◼在多台服务器上分别部署Tomcat，使用反向代理
软件（Nginx）把请求均匀分发到每个Tomcat中
。此处假设Tomcat最多支持100个并发，Nginx
最多支持50000个并发，那么理论上Nginx把请求
分发到500个Tomcat上，就能抗住50000个并发
。其中涉及的技术包括：Nginx、HAProxy，两
者都是工作在网络第七层的反向代理软件，主要
支持http协议，还会涉及session共享、文件上传
下载的问题。

反向代理使应用服务器可支持的并发量大大增加
，但并发量的增长也意味着更多请求穿透到数据
库，单机的数据库最终成为瓶颈



36

Nginx as Load Balancer



37



38



39

5 第四次演进：数据库读写分离

◼把数据库划分为读库和写库，读库可以有多个，
通过同步机制把写库的数据同步到读库，对于需
要查询最新写入数据场景，可通过在缓存中多写
一份，通过缓存获得最新数据。其中涉及的技术
包括：Mycat，它是数据库中间件，可通过它来组
织数据库的分离读写和分库分表，客户端通过它
来访问下层数据库，还会涉及数据同步，数据一
致性的问题。

业务逐渐变多，不同业务之间的访问量差距较大
，不同业务直接竞争数据库，相互影响性能



40



41

6 第五次演进：数据库按业务分库

◼把不同业务的数据保存到不同的数据库
中，使业务之间的资源竞争降低，对于
访问量大的业务，可以部署更多的服务
器来支撑。这样同时导致跨业务的表无
法直接做关联分析，需要通过其他途径
来解决，但这不是本文讨论的重点，有
兴趣的可以自行搜索解决方案。

随着用户数的增长，单机的写库会逐
渐会达到性能瓶颈



42

7 第六次演进：把大表拆分为小表
◼ 比如针对评论数据，可按照商品ID进行hash，路由到对应的表中存储；针

对支付记录，可按照小时创建表，每个小时表继续拆分为小表，使用用户
ID或记录编号来路由数据。只要实时操作的表数据量足够小，请求能够足
够均匀的分发到多台服务器上的小表，那数据库就能通过水平扩展的方式
来提高性能。其中前面提到的Mycat也支持在大表拆分为小表情况下的访问
控制。

◼ 这种做法显著的增加了数据库运维的难度，对DBA的要求较高。数据库设
计到这种结构时，已经可以称为分布式数据库，但是这只是一个逻辑的数
据库整体，数据库里不同的组成部分是由不同的组件单独来实现的，如分
库分表的管理和请求分发，由Mycat实现，SQL的解析由单机的数据库实现
，读写分离可能由网关和消息队列来实现，查询结果的汇总可能由数据库
接口层来实现等等，这种架构其实是MPP（大规模并行处理）架构的一类
实现。

◼ 目前开源和商用都已经有不少MPP数据库，开源中比较流行的有
Greenplum、TiDB、Postgresql XC、HAWQ等，商用的如南大通用的
GBase、睿帆科技的雪球DB、华为的LibrA等等，不同的MPP数据库的侧
重点也不一样，如TiDB更侧重于分布式OLTP场景，Greenplum更侧重于分
布式OLAP场景，这些MPP数据库基本都提供了类似Postgresql、Oracle、
MySQL那样的SQL标准支持能力，能把一个查询解析为分布式的执行计划
分发到每台机器上并行执行，最终由数据库本身汇总数据进行返回，也提
供了诸如权限管理、分库分表、事务、数据副本等能力，并且大多能够支
持100个节点以上的集群，大大降低了数据库运维的成本，并且使数据库也
能够实现水平扩展。

 数据库和Tomcat都能够水平扩展，可支撑的并发大幅提高，随着用户
数的增长，最终单机的Nginx会成为瓶颈



43



44

8 第七次演进：使用LVS或F5来使多个Nginx负载均衡
◼ 由于瓶颈在Nginx，因此无法通过两层的Nginx来实现多个Nginx

的负载均衡。图中的LVS和F5是工作在网络第四层的负载均衡
解决方案，其中LVS是软件，运行在操作系统内核态，可对
TCP请求或更高层级的网络协议进行转发，因此支持的协议更
丰富，并且性能也远高于Nginx，可假设单机的LVS可支持几十
万个并发的请求转发；F5是一种负载均衡硬件，与LVS提供的
能力类似，性能比LVS更高，但价格昂贵。由于LVS是单机版
的软件，若LVS所在服务器宕机则会导致整个后端系统都无法
访问，因此需要有备用节点。可使用keepalived软件模拟出虚
拟IP，然后把虚拟IP绑定到多台LVS服务器上，浏览器访问虚
拟IP时，会被路由器重定向到真实的LVS服务器，当主LVS服
务器宕机时，keepalived软件会自动更新路由器中的路由表，
把虚拟IP重定向到另外一台正常的LVS服务器，从而达到LVS
服务器高可用的效果。

◼ 此处需要注意的是，上图中从Nginx层到Tomcat层这样画并不
代表全部Nginx都转发请求到全部的Tomcat，在实际使用时，
可能会是几个Nginx下面接一部分的Tomcat，这些Nginx之间通
过keepalived实现高可用，其他的Nginx接另外的Tomcat，这
样可接入的Tomcat数量就能成倍的增加

 由于LVS也是单机的，随着并发数增长到几十万时，LVS服
务器最终会达到瓶颈，此时用户数达到千万甚至上亿级别，
用户分布在不同的地区，与服务器机房距离不同，导致了访
问的延迟会明显不同



45

9 第八次演进：通过DNS轮询实现机房间的负载均衡

◼ 在DNS服务器中可配置一个域名对应多
个IP地址，每个IP地址对应到不同的机
房里的虚拟IP。当用户访问
www.taobao.com时，DNS服务器会使
用轮询策略或其他策略，来选择某个IP
供用户访问。此方式能实现机房间的负
载均衡，至此，系统可做到机房级别的
水平扩展，千万级到亿级的并发量都可
通过增加机房来解决，系统入口处的请
求并发量不再是问题。

随着数据的丰富程度和业务的发展
，检索、分析等需求越来越丰富，
单单依靠数据库无法解决如此丰富
的需求

算是对应了别的资源中所提到的 CDN ？



46

应该有一层 CDN – 业务的大范围(全国或全球)布局



47



48



49

https://www.globaldots.com/content-

delivery-network-explained/

https://www.globaldots.com/content-delivery-network-explained/


50

10 第九次演进：引入NoSQL数据库和搜索引擎等技术

◼ 当数据库中的数据多到一定规模时，数据库就不适用
于复杂的查询了，往往只能满足普通查询的场景。对
于统计报表场景，在数据量大时不一定能跑出结果，
而且在跑复杂查询时会导致其他查询变慢，对于全文
检索、可变数据结构等场景，数据库天生不适用。因
此需要针对特定的场景，引入合适的解决方案。如对
于海量文件存储，可通过分布式文件系统HDFS解决，
对于key value类型的数据，可通过HBase和Redis等
方案解决，对于全文检索场景，可通过搜索引擎如
ElasticSearch解决，对于多维分析场景，可通过Kylin
或Druid等方案解决。

◼ 当然，引入更多组件同时会提高系统的复杂度，不同
的组件保存的数据需要同步，需要考虑一致性的问题
，需要有更多的运维手段来管理这些组件等。

 引入更多组件解决了丰富的需求，业务维度能够极
大扩充，随之而来的是一个应用中包含了太多的业
务代码，业务的升级迭代变得困难



51

11 第十次演进：大应用拆分为小应用

◼按照业务板块来划分应用代码，使
单个应用的职责更清晰，相互之间
可以做到独立升级迭代。这时候应
用之间可能会涉及到一些公共配置
，可以通过分布式配置中心
Zookeeper来解决。

不同应用之间存在共用的模块，由
应用单独管理会导致相同代码存在
多份，导致公共功能升级时全部应
用代码都要跟着升级



52

12 第十一次演进：复用的功能抽离成微服务

◼ 如用户管理、订单、支付、鉴权等功能在
多个应用中都存在，那么可以把这些功能
的代码单独抽取出来形成一个单独的服务
来管理，这样的服务就是所谓的微服务，
应用和服务之间通过HTTP、TCP或RPC请
求等多种方式来访问公共服务，每个单独
的服务都可以由单独的团队来管理。此外
，可以通过Dubbo、SpringCloud等框架实
现服务治理、限流、熔断、降级等功能，
提高服务的稳定性和可用性。

不同服务的接口访问方式不同，应用代
码需要适配多种访问方式才能使用服务
，此外，应用访问服务，服务之间也可
能相互访问，调用链将会变得非常复杂
，逻辑变得混乱



53

13 第十二次演进：引入企业服务总线ESB屏蔽服务接口的访问
差异

◼ 通过ESB统一进行访问协议转换，应用统一通过
ESB来访问后端服务，服务与服务之间也通过ESB
来相互调用，以此降低系统的耦合程度。这种单个
应用拆分为多个应用，公共服务单独抽取出来来管
理，并使用企业消息总线来解除服务之间耦合问题
的架构，就是所谓的SOA（面向服务）架构，这种
架构与微服务架构容易混淆，因为表现形式十分相
似。个人理解，微服务架构更多是指把系统里的公
共服务抽取出来单独运维管理的思想，而SOA架构
则是指一种拆分服务并使服务接口访问变得统一的
架构思想，SOA架构中包含了微服务的思想。

 业务不断发展，应用和服务都会不断变多，应用
和服务的部署变得复杂，同一台服务器上部署多
个服务还要解决运行环境冲突的问题，此外，对
于如大促这类需要动态扩缩容的场景，需要水平
扩展服务的性能，就需要在新增的服务上准备运
行环境，部署服务等，运维将变得十分困难



54

14 第十三次演进：引入容器化技术实现运行环境隔离与动态服
务管理

◼ 目前最流行的容器化技术是Docker，最流行的容器管理服
务是Kubernetes(K8S)，应用/服务可以打包为Docker镜像
，通过K8S来动态分发和部署镜像。Docker镜像可理解为
一个能运行你的应用/服务的最小的操作系统，里面放着应
用/服务的运行代码，运行环境根据实际的需要设置好。把
整个“操作系统”打包为一个镜像后，就可以分发到需要部署
相关服务的机器上，直接启动Docker镜像就可以把服务起
起来，使服务的部署和运维变得简单。

◼ 在大促的之前，可以在现有的机器集群上划分出服务器来
启动Docker镜像，增强服务的性能，大促过后就可以关闭
镜像，对机器上的其他服务不造成影响（在3.14节之前，
服务运行在新增机器上需要修改系统配置来适配服务，这
会导致机器上其他服务需要的运行环境被破坏）。

 使用容器化技术后服务动态扩缩容问题得以解决，但是
机器还是需要公司自身来管理，在非大促的时候，还是
需要闲置着大量的机器资源来应对大促，机器自身成本
和运维成本都极高，资源利用率低



55

15 第十四次演进：以云平台承载系统
◼ 系统可部署到公有云上，利用公有云的海量机器资源

，解决动态硬件资源的问题，在大促的时间段里，在
云平台中临时申请更多的资源，结合Docker和K8S
来快速部署服务，在大促结束后释放资源，真正做到
按需付费，资源利用率大大提高，同时大大降低了运
维成本。

◼ 所谓的云平台，就是把海量机器资源，通过统一的资
源管理，抽象为一个资源整体，在之上可按需动态申
请硬件资源（如CPU、内存、网络等），并且之上
提供通用的操作系统，提供常用的技术组件（如
Hadoop技术栈，MPP数据库等）供用户使用，甚至
提供开发好的应用，用户不需要关系应用内部使用了
什么技术，就能够解决需求（如音视频转码服务、邮
件服务、个人博客等）。在云平台中会涉及如下几个
概念：

➢ IaaS：基础设施即服务。对应于上面所说的机器
资源统一为资源整体，可动态申请硬件资源的层
面；

➢ PaaS：平台即服务。对应于上面所说的提供常用的技
术组件方便系统的开发和维护；

➢ SaaS：软件即服务。对应于上面所说的提供开发好的
应用或服务，按功能或性能要求付费。



56

很佩服：阿里云已成为全球知名的云服务提供商！

Many Cloud platforms



57

现在很流行Cloud 上部署 – 但，架构还是类似



58



157

2021年7月22日14:49:39 

◼找到一个专门的“秒杀”代码

https://github.com/qiurunze123/miaosha

https://github.com/qiurunze123/miaosha


207

Summary



208

Now, a quite complex system

But still the sketch is followed 

业务系统
（如，如何支持订单？极限

情况下的订单处理？）

数据的采集和保存
（如，围绕订单的处理而需

要维护的数据）

数据分析



209

业务系统(Business System) 是立身之本~

数据分析



210

数据分析是提升效率和满意度的保障 – (例如精准营销)

业务系统
（如，如何支持订单？极限

情况下的订单处理？）



211

架构分解就是为了满足高并发和大数据，具体原则：



212

Load 

Balancer

Distributed 

Caches + 

Files

Distributed 

DBs

Big Data + 

Cloud 

now



214

Chapter 6: HUGE Concurrency architecture for “秒杀”

Architecture for “秒杀”

⚫ Just “Divide and Conquer” – Data level, Module 
level

⚫Big Data + Cloud now!

So-called Software architect [软件架构师]



216

Big Data + Cloud now



217

2021年“双11”，被鲁肃称为阿里集团100%上云，也就是阿里巴巴的大大
小小的业务，已经完全跑在了阿里云上

https://zhuanlan.zhihu.com/p/495147699

https://mp.ofweek.com/iot/a056714283287

https://zhuanlan.zhihu.com/p/495147699
https://mp.ofweek.com/iot/a056714283287


218



219

OceanBase 大事记

 2010 创始人阳振坤加入阿里巴巴，OceanBase 正式立项；

 2011 OceanBase 0.1 版本发布，应用于淘宝收藏夹；

 2014 OceanBase 0.5 版本发布，替代 Oracle 在支付宝交易系统上线，负担“双
十一”10% 流量；

 2015 网商银行成立，OceanBase 成为全球首个应用在金融核心业务系统的分布
式关系数据库；

 2016 OceanBase 1.0 版本在支付宝账务系统上线，支撑 12 万笔/秒支付峰值；

 2017 支付宝首次把账务库在内的所有核心数据链路搬到 OceanBase 上，创造
4200 万次 / 秒数据库处理峰值纪录。同年，OceanBase 1.x 版本在多家商业银
行上线；

 2018 OceanBase 2.0 版本正式发布，降低金融业务向分布式架构转型的技术风
险；

 2019 OceanBase 获得 TPC-C 基准测试排名榜首。



220



221



222

Another example with Storm, Redis, Dynamic UI etc. 



223



224

Data Analytics with ELK
(Elasticsearch, Logstash and Kibana)

https://www.tatvasoft.com/blog/data-analytics-elasticsearch-logstash-kibana-elk/

ElasticsearchLogstash

Kibana

https://www.tatvasoft.com/blog/data-analytics-elasticsearch-logstash-kibana-elk/


228

Chapter 6: HUGE Concurrency architecture for “秒杀”

Architecture for “秒杀”

⚫ Just “Divide and Conquer” – Data level, Module 
level

⚫Big Data + Cloud now!

So-called Software architect [软件架构师]



229

软件架构师是软件行业中一种新兴职业，工作职责是在一个软件项目开发
过程中，将客户的需求转换为规范的开发计划及文本，并制定这个项目的
总体架构，指导整个开发团队完成这个计划。主导系统全局分析设计和实
施、负责软件构架和关键技术决策的人员

软件架构师一般都是具备计算机科学或软件工程的知识，由程序员做起，
然后再慢慢发展为架构师的。
◼在国内，很多大学目前还没有设立软件架构的学位课程，虽然IT业界对设计和
架构的兴趣日渐高涨，但各学校还是无法在课程中增加相应的内容来体现这一
趋势。从这个方面来说，学校教育已经远远落后于产业发展。

https://baike.baidu.com/item/软件架构师

https://baike.baidu.com/item/%E8%BD%AF%E4%BB%B6%E6%9E%B6%E6%9E%84%E5%B8%88/3476994
https://baike.baidu.com/item/%E8%BD%AF%E4%BB%B6%E6%9E%84%E6%9E%B6/7346287
https://baike.baidu.com/item/软件架构师


230

能力要求
 在技术全面、成熟练达、洞察力强、经验丰富，具备在缺乏完整信息、众多问题交织一团、模糊
和矛盾的情况下，软件架构师能迅速抓住问题要害，并做出合理的关键决定的能力、具备战略性
和前瞻性思维能力，善于把握全局，能够在更高抽象级别上进行思考。主要包括如下：

◼ ⒈对项目开发涉及的所有问题领域都有经验，包括彻底地理解项目需求，开展分析设计之类软件工程活
动等

◼ ⒉具备领导素质，以在各小组之间推进技术工作，并在项目压力下做出牢靠的关键决策；

◼ ⒊拥有优秀的沟通能力，用以进行说服、鼓励和指导等活动，并赢得项目成员的信任；

◼ ⒋以目标导向和主动的方式来不带任何感情色彩地关注项目结果，构架师应当是项目背后的技术推动力
，而非构想者或梦想家（追求完美）；

◼ ⒌精通构架设计的理论、实践和工具，并掌握多种参考构架、主要的可重用构架机制和模式（例如J2EE
架构等）；

◼ ⒍具备系统设计员的所有技能，但涉及面更广、抽象级别更高；活动确定用例或需求的优先级、进行构
架分析、创建构架的概念验证原型、评估构架的概念验证原型的可行性、组织系统实施模型、描述系统
分布结构、描述运行时刻构架、确定设计机制、确定设计元素、合并已有设计元素、构架文档、参考构
架、分析模型、设计模型、实施模型、部署模型、构架概念验证原型、接口、事件、信号与协议等。

https://baike.baidu.com/item/软件架构师

https://baike.baidu.com/item/%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B
https://baike.baidu.com/item/%E7%B3%BB%E7%BB%9F%E5%AE%9E%E6%96%BD
https://baike.baidu.com/item/软件架构师


231

主要任务

架构师的主要任务不是从事具体的软件程序的编写，而是从事更高层
次的开发构架工作。他必须对开发技术非常了解，并且需要有良好的
组织管理能力。可以这样说，一个架构师工作的好坏决定了整个软件
开发项目的成败。
◼⒈领导与协调整个项目中的技术活动（分析、设计和实施等）

◼⒉推动主要的技术决策，并最终表达为软件构架

◼⒊确定和文档化系统的相对构架而言意义重大的方面，包括系统的需求、设计
、实施和部署等“视图”

◼⒋确定设计元素的分组以及这些主要分组之间的接口

◼⒌为技术决策提供规则，平衡各类涉众的不同关注点，化解技术风险，并保证
相关决定被有效的传达和贯彻

◼⒍理解、评价并接收系统需求

◼⒎评价和确认软件架构的实现专业技能

https://baike.baidu.com/item/软件架构师

https://baike.baidu.com/item/%E7%BB%84%E7%BB%87%E7%AE%A1%E7%90%86%E8%83%BD%E5%8A%9B
https://baike.baidu.com/item/%E8%BD%AF%E4%BB%B6%E6%9E%84%E6%9E%B6
https://baike.baidu.com/item/软件架构师


232

虽然大学要加强软件架构学课程的建设，但是，软件架构师的成长应该有一个实
践的教育过程，并不是简单的学校的理论学习或者通过大型软件公司的认证就能
成为合格的软件架构师。除了信息系统综合知识在学校学习外，软件架构师的大
部分知识和经验将来自实际开发工作。根据软件架构师的任职条件，一名合格的
软件架构师的成长应该经历8年以上的软件项目开发实际工作经验。一般需要经
历程序员、软件设计师等阶段，然后再发展成为软件架构师。

当然，并不是每一位程序员经过8年后都可以成长为软件架构师的。一个软件工
程师在充分掌握了软件架构师工作所必需的基本理论和技能后，如何得到和利用
机会、如何利用所掌握的技能进行应用系统的合理架构、如何不断的抽象和总结
自己的架构模式、如何深入行业成为能够胜任分析、架构为一体的精英人才，这
就在于机遇、个人的努力和天赋了。

https://baike.baidu.com/item/软件架构师

https://baike.baidu.com/item/%E8%BD%AF%E4%BB%B6%E8%AE%BE%E8%AE%A1%E5%B8%88
https://baike.baidu.com/item/软件架构师


233

就目前来看，国内软件架构师的培养途径主要有两种方式，一种是大学（软件学
院）教育方式，另一种是个人自我培养然后再进行相应的培训和认证。但是，不
管哪种方式都有其不足之处。
◼ 软件学院的培养方式能够系统的学习软件架构师必需的知识体系，但是，软件架构师不是简
单的通过理论学习就能够培养出来的，软件学院的学生可能缺乏必要的设计、开发经验和相
关的领域知识。尽管软件学院也强调给予学生实践的机会，但毕竟这种机会是有限的。有关“
三分之一的师资来自企业”的规定，在部分软件学院中也没有得到真正落实，导致传授给学生
的还是一些纯理论知识。

◼ 自我培养方式的主要对象是具有一定年限的软件开发和设计人员，如Microsoft、IBM、Sun等
公司的软件架构师认证对学员的基础并没有具体的要求，只要交纳规定的费用，然后进行几
天的集中培训，通过考试就发给学员证书，甚至不需要考试就直接发放证书。这些开发人员
在自我培养的过程中不一定能够系统的学习软件架构师的理论知识，他们只具有一定的开发
和设计经验，仅仅经过几天的培训，是不太可能培养出合格的软件架构师的。而且，作为某
个厂商的培训和认证，其最终目的是培育自己的市场，培养一批忠诚的用户，而不是为中国
培养软件架构师。因此，也存在很大的问题和缺陷。

https://baike.baidu.com/item/软件架构师

https://baike.baidu.com/item/软件架构师


234

 针对软件架构师在软件组织中的作用和其在国内的培养现状，有分析家认为有必要将软件架构师
的教育、培训和认证作为发展民族软件产业的一个基本决策，制定详细的软件架构师培养方案。
因此，提出以下一些关于软件架构师培养的基该方法和途径。

◼ ⑴确定软件架构师在软件组织中的职责和充当的角色，确定其相应的必须具备的知识体系，确定软件架
构师的职业及其相关制度，制定软件架构师的培养目标和培养方案。

◼ ⑵坚持以大学教育为主（特别是各软件学院在这方面可以大施身手），以项目实践为辅的教育方针。大
学可以聘请现有的软件架构师担任核心课程的讲师，通过学校教育，系统学习软件架构师所必需的知识
体系；通过项目实践使其具有初步的软件开发和设计经验，逐步成长为一名合格的软件架构师。

◼ ⑶作位第2条的补充，聘请现有的软件架构师，个人认为适合以讲座的形式在学校开展。

◼ ⑷对国外一些大公司的软件架构师的培训和认证予以支持，但是在认证的过程中必须坚持符合中国实际
情况的原则。例如，在认证考试之前对考生的知识体系进行系统的测试和评估，在通过认证后的适当时
间内进行重新认证和继续教育。

◼ ⑸建立完善的软件架构师教育和认证制度，使得通过认证的人员能够在实际的软件开发中成为称职的和
优秀的软件架构师。并通过此制度能够为国家培养出更多、更优秀的软件架构师，解决当前软件架构师
急缺问题。

https://baike.baidu.com/item/软件架构师

个人观点：架构师，是能力的层次，不
建议作为职位来理解。

意思就是，还是要打好扎扎实实的编程
技能+商务思维，然后在工作中积极承担

挑战、好好表现，坚持学习和积累，也
就水到渠成了 ☺

https://baike.baidu.com/item/软件架构师


235

由希赛教育软考学院组织编
写，用以作为计算机技术与
软件专业技术资格（水平）
考试中的系统架构设计师级
别的考试辅导指定教材。内
容涵盖了的系统架构设计师
考试大纲的所有知识点，对
系统架构设计师所必须掌握
的基础理论知识做了详细的
介绍，重在培养系统架构设
计师所必须具备的专业技能
和方法


